``````###############
#The Algorithm (In English):

# 1) Pick any node.
# 2) If it is unvisited, mark it as visited and recur on all its
# 3) Repeat until all the nodes are visited, or the node to be
#    searched is found.

# The graph below (declared as a Python dictionary)
# is from the linked website and is used for the sake of
# testing the algorithm. Obviously, you will have your own
# graph to iterate through.
graph = {
'A' : ['B','C'],
'B' : ['D', 'E'],
'C' : ['F'],
'D' : [],
'E' : ['F'],
'F' : []
}

visited = set() # Set to keep track of visited nodes.

##################
# The Algorithm (In Code)

def dfs(visited, graph, node):
if node not in visited:
print (node)
for neighbour in graph[node]:
dfs(visited, graph, neighbour)

# Driver Code to test in python yourself.
# Note that when calling this, you need to
# call the starting node. In this case it is 'A'.
dfs(visited, graph, 'A')

# NOTE: There are a few ways to do DFS, depending on what your
# variables are and/or what you want returned. This specific
# example is the most fleshed-out, yet still understandable,
# explanation I could find.``````

dfs python

``````// performs a depth first search (DFS)
// nodes are number from 1 to n, inclusive
#include <bits/stdc++.h>
using namespace std;

// visited[v] = true if v has been visited by dfs
vector<bool> visited;

bool all_edges_are_directed = true;

void dfs(int v) {
// determines if dfs has been done on v
if(visited[v])
return;
visited[v] = true;

// write code here to do stuff with node v

// traverse nodes that are adjacent to v
dfs(u);
}
}

int main() {
int n;  // number of vertices
int m;  // number of edges
cin >> n >> m;
visited = vector<bool>(n+1, false);

for(int i = 0; i < m; ++i) {
// nodes a and b have an edge between them
int a, b;
cin >> a >> b;

if(all_edges_are_directed)
else {
}
}

// do depth first search on all nodes
for(int i = 1; i <= n; ++i){
dfs(i);
}
}``````

depth first search

``````# HAVE USED ADJACENY LIST
class Graph:
def __init__(self,lst=None):
self.lst=dict()
if lst is None:
pass
else:
self.lst=lst
def find_path(self,start,end):
self.checklist={}
for i in self.lst.keys():
self.checklist[i]=False
self.checklist[start]=True
store,extra=(self.explore(start,end))
if store==False:
print('No Path Found')
else:
print(extra)
def explore(self,start,end):
while True:
q=[]
#print(self.checklist,q)
q.append(start)
flag=False
for i in self.lst[start]:
if i==end:
q.append(i)
return True,q
if self.checklist[i]:
pass
else:
flag=True
self.checklist[i]=True
q.append(i)
break
if flag:
store,extra=self.explore(q[-1],end)
if store==False:
q.pop()
if len(q)==0:return False
return self.explore(q[-1],end)
elif store==None:
pass
elif store==True:
q.pop()
q.extend(extra)
return True,q
else:
return False,None
def __str__(self):return str(self.lst)
if __name__=='__main__':
store={1: [2, 3, 4], 2: [3, 1], 3: [2, 1], 4: [5, 8, 1], 5: [4, 6, 7], 6: [5, 7, 9, 8], 7: [5, 6], 8: [4, 6, 9], 9: [6, 8, 10], 10: [9],11:[12,13]}
a=Graph(store)
a.find_path(1,11) # No Path Found
a.find_path(1,6)# [1, 4, 5, 6]
a.find_path(3,10)   # [3, 2, 1, 4, 5, 6, 9, 10]
a.find_path(4,10)# [4, 5, 6, 9, 10]
print(a) #``````

depth first search

``````#include<bits/stdc++.h>
using namespace std;
{
}
{
visited[u]=true;
cout<<u<<" ";
for(int i=0;i<n;i++)
{
{
}
}
}
{
vector<bool> visited(v,false);
for(int i=0;i<v;i++)
{
if(visited[i]==false)
{
}
}
}
int main()
{
int vertix;
cout<<"Enter the number of vertex :"<<endl;
cin>>vertix;
int edges;
cout<<"Enter the number of edges:"<<endl;
cin>>edges;
vector<int>graph_dfs[vertix];
int a,b;
cout<<"enter all the vertex pair that are connected:"<<endl;
for(int i=0;i<edges;i++)
{
cin>>a>>b;